
Introduction to Bubble Sort and its Variants  

The sequential bubble sort algorithm compares and exchanges 

adjacent elements in the sequence to be sorted:  

 

 

 

 

 

 

 

Sequential bubble sort algorithm. 

 

 



Bubble Sort and its Variants  

• The complexity of bubble sort is Θ(n2).  

• Bubble sort is difficult to parallelize since the algorithm 

has no concurrency.  

• A simple variant, though, uncovers the concurrency.  

 



Odd-Even Transposition  

 

Sequential odd-even transposition sort algorithm.  



Odd-Even Transposition  

Sorting n = 8 elements, using the odd-even transposition sort 
algorithm. During each phase, n = 8 elements are compared.  



Odd-Even Transposition  

• After n phases of odd-even exchanges, the sequence is 

sorted.  

• Each phase of the algorithm (either odd or even) 

requires Θ(n) comparisons.  

• Serial complexity is Θ(n2).  

 



Parallel Odd-Even Transposition  

• Consider the one item per processor case.  

• There are n iterations, in each iteration, each processor 

does one compare-exchange.  

• The parallel run time of this formulation is Θ(n).  

• This is cost optimal with respect to the base serial 

algorithm but not the optimal one.  

 



Parallel Odd-Even Transposition  

Parallel formulation of odd-even transposition.  



Parallel Odd-Even Transposition  

• Consider a block of n/p elements per processor.  

• The first step is a local sort.  

• In each subsequent step, the compare exchange 

operation is replaced by the compare split operation.  

• The parallel run time of the formulation is 

 



Parallel Odd-Even Transposition  

• The parallel formulation is cost-optimal for p = O(log n).  

• The isoefficiency function of this parallel formulation      

is Θ(p2p).  

 



Shellsort  

• Let n be the number of elements to be sorted and p be 

the number of processes.  

• During the first phase, processes that are far away from 

each other in the array compare-split their elements.  

• During the second phase, the algorithm switches to an 

odd-even transposition sort.  

 



Parallel Shellsort  

• Initially, each process sorts its block of n/p elements 

internally.  

• Each process is now paired with its corresponding 

process in the reverse order of the array. That is, 

process Pi, where i < p/2, is paired with process Pp-i-1.  

• A compare-split operation is performed.  

• The processes are split into two groups of size p/2 each 

and the process repeated in each group.  

 



Parallel Shellsort  

An example of the first phase of parallel shellsort on an 

eight-process array.  



Parallel Shellsort  

• Each process performs d = log p compare-split 

operations.  

• With O(p) bisection width, each communication can be 

performed in time Θ(n/p) for a total time of Θ((nlog p)/p).  

• In the second phase, l odd and even phases are 

performed, each requiring time Θ(n/p).  

• The parallel run time of the algorithm is:  



Assignment 

Q.1)Discuss bubble sot & its variant. 

Q.2)Explain parallel shell sort/ 



Quicksort  

• Quicksort is one of the most common sorting algorithms 

for sequential computers because of its simplicity, low 

overhead, and optimal average complexity.  

• Quicksort selects one of the entries in the sequence to 

be the pivot and divides the sequence into two - one with 

all elements less than the pivot and other greater.  

• The process is recursively applied to each of the 

sublists.  

 



Quicksort  

The sequential quicksort algorithm.  



Quicksort  

Example of the quicksort algorithm sorting a sequence of 

size  n = 8.  



Quicksort  

• The performance of quicksort depends critically on the 

quality of the pivot.  

• In the best case, the pivot divides the list in such a way 

that the larger of the two lists does not have more than   

αn elements (for some constant α).  

• In this case, the complexity of quicksort is O(nlog n).  

 



Parallelizing Quicksort  

• Lets start with recursive decomposition - the list is 

partitioned serially and each of the subproblems is 

handled by a different processor.  

• The time for this algorithm is lower-bounded by Ω(n)!  

• Can we parallelize the partitioning step - in particular, if 

we can use n processors to partition a list of length n 

around a pivot in O(1) time, we have a winner.  

• This is difficult to do on real machines, though.  

 



Parallelizing Quicksort: PRAM Formulation  

• We assume a CRCW (concurrent read, concurrent write) PRAM with 

concurrent writes resulting in an arbitrary write succeeding.  

• The formulation works by creating pools of processors. Every 

processor is assigned to the same pool initially and has one 

element.  

• Each processor attempts to write its element to a common location 

(for the pool).  

• Each processor tries to read back the location. If the value read 

back is greater than the processor's value, it assigns itself to the 

`left' pool, else, it assigns itself to the `right' pool.  

• Each pool performs this operation recursively.  

• Note that the algorithm generates a tree of pivots. The depth of the 

tree is the expected parallel runtime. The average value is O(log n).  

 



Parallelizing Quicksort: PRAM Formulation  

A binary tree generated by the execution of the quicksort 

algorithm. Each level of the tree represents a different 

array-partitioning iteration. If pivot selection is optimal, 

then the height of the tree is Θ(log n), which is also the 

number of iterations.  



Parallelizing Quicksort: PRAM Formulation  

The execution of the PRAM algorithm on the array shown in (a).  



Parallelizing Quicksort: Shared Address Space 

Formulation  

• Consider a list of size n equally divided across p 
processors.  

• A pivot is selected by one of the processors and made 
known to all processors.  

• Each processor partitions its list into two, say Li and Ui, 
based on the selected pivot.  

• All of the Li lists are merged and all of the Ui lists are 
merged separately.  

• The set of processors is partitioned into two (in 
proportion of the size of lists L and U). The process is 
recursively applied to each of the lists.  



Shared Address Space Formulation  



Parallelizing Quicksort: Shared Address Space 

Formulation  

• The only thing we have not described is the global 

reorganization (merging) of local lists to form L and U.  

• The problem is one of determining the right location for 

each element in the merged list.  

• Each processor computes the number of elements 

locally less than and greater than pivot.  

• It computes two sum-scans to determine the starting 

location for its elements in the merged L and U lists.  

• Once it knows the starting locations, it can write its 

elements safely.  



Parallelizing Quicksort: Shared Address Space 

Formulation  

Efficient global rearrangement of the array.  



Parallelizing Quicksort: Shared Address Space 

Formulation  

• The parallel time depends on the split and merge time, and the 

quality of the pivot.  

• The latter is an issue independent of parallelism, so we focus on the 

first aspect, assuming ideal pivot selection.  

• The algorithm executes in four steps: (i) determine and broadcast 

the pivot; (ii) locally rearrange the array assigned to each process; 

(iii) determine the locations in the globally rearranged array that the 

local elements will go to; and (iv) perform the global rearrangement.  

• The first step takes time Θ(log p), the second, Θ(n/p) , the third, 

Θ(log p) , and the fourth, Θ(n/p).  

• The overall complexity of splitting an n-element array is Θ(n/p) + 
Θ(log p). 



Parallelizing Quicksort: Shared Address Space 

Formulation  

• The process recurses until there are p lists, at which 

point, the lists are sorted locally.  

• Therefore, the total parallel time is:  

 

 

 

 

• The corresponding isoefficiency is Θ(plog2p) due to 

broadcast and scan operations.  



Parallelizing Quicksort: Message Passing Formulation  

• A simple message passing formulation is based on the recursive 

halving of the machine.  

• Assume that each processor in the lower half of a p processor 

ensemble is paired with a corresponding processor in the upper 

half.  

• A designated processor selects and broadcasts the pivot.  

• Each processor splits its local list into two lists, one less (Li), and 

other greater (Ui) than the pivot.  

• A processor in the low half of the machine sends its list Ui to the 

paired processor in the other half. The paired processor sends its  

list Li.  

• It is easy to see that after this step, all elements less than the 

pivot are in the low half of the machine and all elements greater 

than the pivot are in the high half.  

 



Parallelizing Quicksort: Message Passing Formulation  

• The above process is recursed until each processor has 

its own local list, which is sorted locally.  

• The time for a single reorganization is Θ(log p) for 

broadcasting the pivot element, Θ(n/p) for splitting the 

locally assigned portion of the array, Θ(n/p) for exchange 

and local reorganization.  

• We note that this time is identical to that of the 

corresponding shared address space formulation.  

• It is important to remember that the reorganization of 

elements is a bandwidth sensitive operation.  

 



Bucket and Sample Sort  

• In Bucket sort, the range [a,b] of input numbers is 

divided into m equal sized intervals, called buckets.  

• Each element is placed in its appropriate bucket.  

• If the numbers are uniformly divided in the range, the 

buckets can be expected to have roughly identical 

number of elements.  

• Elements in the buckets are locally sorted.  

• The run time of this algorithm is Θ(nlog(n/m)).  

 



Parallel Bucket Sort  

• Parallelizing bucket sort is relatively simple. We can 

select m = p.  

• In this case, each processor has a range of values it is 

responsible for.  

• Each processor runs through its local list and assigns 

each of its elements to the appropriate processor.  

• The elements are sent to the destination processors 

using a single all-to-all personalized communication.  

• Each processor sorts all the elements it receives.  

 



Parallel Bucket and Sample Sort  

• The critical aspect of the above algorithm is one of 
assigning ranges to processors. This is done by suitable 
splitter selection.  

• The splitter selection method divides the n elements into  
m blocks of size n/m each, and sorts each block by 
using quicksort.  

• From each sorted block it chooses m – 1 evenly spaced 
elements.  

• The m(m – 1) elements selected from all the blocks 
represent the sample used to determine the buckets.  

• This scheme guarantees that the number of elements 
ending up in each bucket is less than 2n/m.  



Parallel Bucket and Sample Sort  

An example of the execution of sample sort on an array 

with 24 elements on three processes.  



Parallel Bucket and Sample Sort  

• The splitter selection scheme can itself be parallelized.  

• Each processor generates the p – 1 local splitters in 

parallel.  

• All processors share their splitters using a single all-to-all 

broadcast operation.  

• Each processor sorts the p(p – 1) elements it receives 

and selects p – 1 uniformly spaces splitters from them.  



Parallel Bucket and Sample Sort: Analysis  

• The internal sort of n/p elements requires time 

Θ((n/p)log(n/p)), and the selection of p – 1 sample 

elements requires time Θ(p).  

• The time for an all-to-all broadcast is Θ(p2), the time to 

internally sort the p(p – 1) sample elements is Θ(p2log p), 
and selecting p – 1 evenly spaced splitters takes time Θ(p).  

• Each process can insert these p – 1splitters in its local 

sorted block of size n/p by performing p – 1 binary searches 

in time Θ(plog(n/p)).  

• The time for reorganization of the elements is O(n/p).  



Parallel Bucket and Sample Sort: Analysis  

• The total time is given by:  

 

 

 

 

• The isoefficiency of the formulation is Θ(p3log p).  

 


